Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.025
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612757

RESUMO

Wildtype Escherichia coli cells cannot grow on L-1,2-propanediol, as the fucAO operon within the fucose (fuc) regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that fucAO operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the fucO promoter within the 3'-end of fucA is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main fucAO operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the fucAO locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the fucAO promoter by efficiently recruiting RNA polymerase.


Assuntos
Escherichia coli , Fucose , Sítios de Ligação , Escherichia coli/genética , Óperon/genética , Fosforilação
2.
Nat Commun ; 15(1): 3088, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600064

RESUMO

Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) - the variability of gene expression in response to environmental changes - remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also find that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano/genética , Óperon/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
PLoS Genet ; 20(3): e1011215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512984

RESUMO

Enterococci are commensal members of the gastrointestinal tract and also major nosocomial pathogens. They possess both intrinsic and acquired resistance to many antibiotics, including intrinsic resistance to cephalosporins that target bacterial cell wall synthesis. These antimicrobial resistance traits make enterococcal infections challenging to treat. Moreover, prior therapy with antibiotics, including broad-spectrum cephalosporins, promotes enterococcal proliferation in the gut, resulting in dissemination to other sites of the body and subsequent infection. As a result, a better understanding of mechanisms of cephalosporin resistance is needed to enable development of new therapies to treat or prevent enterococcal infections. We previously reported that flow of metabolites through the peptidoglycan biosynthesis pathway is one determinant of enterococcal cephalosporin resistance. One factor that has been implicated in regulating flow of metabolites into cell wall biosynthesis pathways of other Gram-positive bacteria is GlmR. In enterococci, GlmR is encoded as the middle gene of a predicted 3-gene operon along with YvcJ and YvcL, whose functions are poorly understood. Here we use genetics and biochemistry to investigate the function of the enterococcal yvcJ-glmR-yvcL gene cluster. Our results reveal that YvcL is a DNA-binding protein that regulates expression of the yvcJ-glmR-yvcL operon in response to cell wall stress. YvcJ and GlmR bind UDP-GlcNAc and reciprocally regulate cephalosporin resistance in E. faecalis, and binding of UDP-GlcNAc by YvcJ appears essential for its activity. Reciprocal regulation by YvcJ/GlmR is essential for fitness during exposure to cephalosporin stress. Additionally, our results indicate that enterococcal GlmR likely acts by a different mechanism than the previously studied GlmR of Bacillus subtilis, suggesting that the YvcJ/GlmR regulatory module has evolved unique targets in different species of bacteria.


Assuntos
Resistência às Cefalosporinas , Cefalosporinas , Cefalosporinas/farmacologia , Cefalosporinas/metabolismo , Resistência às Cefalosporinas/genética , Antibacterianos/farmacologia , Enterococcus faecalis/genética , Óperon/genética , Difosfato de Uridina/metabolismo
4.
Cell Syst ; 15(3): 227-245.e7, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417437

RESUMO

Many bacteria use operons to coregulate genes, but it remains unclear how operons benefit bacteria. We integrated E. coli's 788 polycistronic operons and 1,231 transcription units into an existing whole-cell model and found inconsistencies between the proposed operon structures and the RNA-seq read counts that the model was parameterized from. We resolved these inconsistencies through iterative, model-guided corrections to both datasets, including the correction of RNA-seq counts of short genes that were misreported as zero by existing alignment algorithms. The resulting model suggested two main modes by which operons benefit bacteria. For 86% of low-expression operons, adding operons increased the co-expression probabilities of their constituent proteins, whereas for 92% of high-expression operons, adding operons resulted in more stable expression ratios between the proteins. These simulations underscored the need for further experimental work on how operons reduce noise and synchronize both the expression timing and the quantity of constituent genes. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Escherichia coli , Óperon , Escherichia coli/genética , Óperon/genética , Bactérias/genética
5.
ACS Synth Biol ; 13(2): 658-668, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38319655

RESUMO

The use of Paenibacillus polymyxa as an industrial producer is limited by the lack of suitable synthetic biology tools. In this study, we identified a native sucrose operon in P. polymyxa. Its structural and functional relationship analysis revealed the presence of multiple regulatory elements, including four ScrR-binding sites and a catabolite-responsive element (CRE). In P. polymyxa, we established a cascade T7 expression system involving an integrated T7 RNA polymerase (T7P) regulated by the sucrose operon and a T7 promoter. It enables controllable gene expression by sucrose and regulatory elements, and a 5-fold increase in expression efficiency compared with the original sucrose operon was achieved. Further deletion of SacB in P. polymyxa resulted in a 38.95% increase in the level of thermophilic lipase (TrLip) production using the cascade T7 induction system. The results highlight the effectiveness of sucrose regulation as a novel synthetic biology tool, which facilitates exploring gene circuits and enables their dynamic regulation.


Assuntos
Paenibacillus polymyxa , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo , Sacarose/metabolismo , Regiões Promotoras Genéticas/genética , Óperon/genética
6.
Nature ; 626(7999): 661-669, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267581

RESUMO

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.


Assuntos
Bactérias , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Transcrição Gênica , Bactérias/genética , Replicação do DNA/genética , Dosagem de Genes/genética , Redes Reguladoras de Genes , Genoma Bacteriano/genética , Óperon/genética , Análise de Sequência de RNA , Transcrição Gênica/genética , Cromossomos Bacterianos/genética
7.
Microb Drug Resist ; 30(2): 82-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38252794

RESUMO

Staphylococcus aureus is a major, widespread pathogen, and its biofilm-forming characteristics make it even more difficult to eliminate by biocides. Tetracycline (TCY) is a major broad-spectrum antibiotic, the residues of which can cause deleterious health impacts, and subinhibitory concentrations of TCY have the potential to increase biofilm formation in S. aureus. In this study, we showed how the biofilm formation of S. aureus 123786 is enhanced in the presence of TCY at specific subinhibitory concentrations. S. aureus 123786 used in this study was identified as Staphylococcal Cassette Chromosome mec III, sequence type239 and naturally lacking ica operon and atl gene. Two assays were performed to quantify the formation of S. aureus biofilm. In the crystal violet (CV) assay, the absorbance values of biofilm stained with CV at optical density (OD)540 nm increased after 8 and 16 hr of incubation when the concentration of TCY was 1/2 minimum inhibitory concentration (MIC), whereas at the concentration of 1/16 MIC, the absorbance values increased after 16 and 24 hr of incubation. In tetrazolium salt reduction assay, the absorbance value at OD490 nm of S. aureus 123786 biofilms mixed with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium solution increased after 8 hr when the concentration of TCY was 1/4 MIC, which may be correlated with the higher proliferation and maturation of biofilm. In conclusion, the biofilm formation of S. aureus 123786 could be enhanced in the presence of TCY at specific subinhibitory concentrations.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus/genética , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/genética , Tetraciclina/farmacologia , Biofilmes , Óperon/genética
8.
PLoS One ; 18(12): e0289072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38051731

RESUMO

Heterogeneity of ribosomal RNA (rRNA) sequences has recently emerged as a mechanism that can lead to subpopulations of specialized ribosomes. Our previous study showed that ribosomes containing highly divergent rRNAs expressed from the rrnI operon (I-ribosomes) can preferentially translate a subset of mRNAs such as hspA and tpiA in the Vibrio vulnificus CMCP6 strain. Here, we explored the functional conservation of I-ribosomes across Vibrio species. Exogenous expression of the rrnI operon in another V. vulnificus strain, MO6-24/O, and in another Vibrio species, V. fischeri (strain MJ11), decreased heat shock susceptibility by upregulating HspA expression. In addition, we provide direct evidence for the preferential synthesis of HspA by I-ribosomes in the V. vulnificus MO6-24/O strain. Furthermore, exogenous expression of rrnI in V. vulnificus MO6-24/O cells led to higher mortality of infected mice when compared to the wild-type (WT) strain and a strain expressing exogenous rrnG, a redundant rRNA gene in the V. vulnificus CMCP6 strain. Our findings suggest that specialized ribosomes bearing heterogeneous rRNAs play a conserved role in translational regulation among Vibrio species. This study shows the functional importance of rRNA heterogeneity in gene expression control by preferential translation of specific mRNAs, providing another layer of specialized ribosome system.


Assuntos
Vibrio vulnificus , Vibrio , Camundongos , Animais , Vibrio/genética , RNA Ribossômico/genética , Ribossomos/genética , Ribossomos/metabolismo , Vibrio vulnificus/genética , Óperon/genética
9.
Nat Commun ; 14(1): 7232, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963895

RESUMO

It is generally assumed that all bacteria must have at least one rRNA operon (rrn operon) on the chromosome, but some strains of the genera Aureimonas and Oecophyllibacter carry their sole rrn operon on a plasmid. However, other related strains and species have chromosomal rrn loci, suggesting that the exclusive presence of rrn operons on a plasmid is rare and unlikely to be stably maintained over long evolutionary periods. Here, we report the results of a systematic search for additional bacteria without chromosomal rrn operons. We find that at least four bacterial clades in the phyla Bacteroidota, Spirochaetota, and Pseudomonadota (Proteobacteria) lost chromosomal rrn operons independently. Remarkably, Persicobacteraceae have apparently maintained this peculiar genome organization for hundreds of millions of years. In our study, all the rrn-carrying plasmids in bacteria lacking chromosomal rrn loci possess replication initiator genes of the Rep_3 family. Furthermore, the lack of chromosomal rrn operons is associated with differences in copy numbers of rrn operons, plasmids, and chromosomal tRNA genes. Thus, our findings indicate that the absence of rrn loci in bacterial chromosomes can be stably maintained over long evolutionary periods.


Assuntos
Óperon , Óperon de RNAr , Óperon de RNAr/genética , Plasmídeos/genética , Óperon/genética , Cromossomos , Bactérias/genética , RNA Ribossômico/genética
10.
Nat Commun ; 14(1): 7478, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978176

RESUMO

Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking. Here, we use RT-qPCR and 3C-qPCR to study the transcriptional and architectural profiles of the H-NS (histone-like nucleoid structuring protein)-regulated, osmoresponsive proVWX operon of Escherichia coli at different osmolarities and provide in vivo evidence for transcription regulation by NAP-mediated chromosome re-modelling in bacteria. By consolidating our in vivo investigations with earlier in vitro and in silico studies that provide mechanistic details of how H-NS re-models DNA in response to osmolarity, we report that activation of proVWX in response to a hyperosmotic shock involves the destabilization of H-NS-mediated bridges anchored between the proVWX downstream and upstream regulatory elements (DRE and URE), and between the DRE and ygaY that lies immediately downstream of proVWX. The re-establishment of these bridges upon adaptation to hyperosmolarity represses the operon. Our results also reveal additional structural features associated with changes in proVWX transcript levels such as the decompaction of local chromatin upstream of the operon, highlighting that further complexity underlies the regulation of this model operon. H-NS and H-NS-like proteins are wide-spread amongst bacteria, suggesting that chromosome re-modelling may be a typical feature of transcriptional control in bacteria.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cromatina/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Óperon/genética
11.
Cell Rep ; 42(10): 113227, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37837619

RESUMO

Salmonella enterica subsp. enterica serovar 4,[5],12:i:- (Salmonella 4,[5],12:i:-), derived from S. Typhimurium, has become the dominant serotype causing human salmonellosis. In this study, we define the genetic mechanism of the generation of Salmonella 4,[5],12:i:- from S. Typhimurium through complicated transpositions and demonstrate that Salmonella 4,[5],12:i:- displays more efficient colonization and survival abilities in mice than its parent S. Typhimurium strain. We identified intermediate strains carrying both resistance regions (RRs) and the fljAB operon for the generation of Salmonella 4,[5],12:i:-. The insertion of RR3 into the chromosomal hin-iroB site of S. Typhimurium produced RR3-S. Typhimurium as a primary intermediate. Salmonella 4,[5],12:i:- was then produced by replacing the fljAB operon and/or its flanking sequences through intramolecular transpositions mediated by IS26 and/or IS1R elements in RR3-S. Typhimurium, which was further confirmed both in vitro and in vivo. Overall, we demonstrate the molecular mechanism underlying the origin, generation, and advantage of RRs-Salmonella 4,[5],12:i:- from S. Typhimurium.


Assuntos
Infecções por Salmonella , Salmonella enterica , Humanos , Animais , Camundongos , Salmonella typhimurium/genética , Sorogrupo , Infecções por Salmonella/genética , Óperon/genética
12.
Mol Microbiol ; 120(5): 629-644, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804169

RESUMO

Listeria monocytogenes is a foodborne bacterium that naturally occurs in the soil. Originating from there, it contaminates crops and infects farm animals and their consumption by humans may lead to listeriosis, a systemic life-threatening infectious disease. The adaptation of L. monocytogenes to such contrastive habitats is reflected by the presence of virulence genes for host infection and other genes for survival under environmental conditions. Among the latter are ABC transporters for excretion of antibiotics produced by environmental competitors; however, most of these transporters have not been characterized. Here, we generated a collection of promoter-lacZ fusions for genes encoding ABC-type drug transporters of L. monocytogenes and screened this reporter strain collection for induction using a library of natural compounds produced by various environmental microorganisms. We found that the timABR locus (lmo1964-lmo1962) was induced by the macrodiolide antibiotic tartrolon B, which is synthesized by the soil myxobacterium Sorangium cellulosum. Tartrolon B resistance of L. monocytogenes was dependent on timAB, encoding the ATPase and the permease component of a novel ABC transporter. Moreover, transplantation of timAB was sufficient to confer tartrolon B resistance to Bacillus subtilis. Expression of the timABR locus was found to be auto-repressed by the TimR repressor, whose repressing activity was lost in the presence of tartrolon B. We also demonstrate that tartrolon sensitivity was suppressed by high external potassium concentrations, suggesting that tartrolon acts as potassium ionophore. Our results help to map the ecological interactions of an important human pathogen with its co-residing species within their joint natural reservoir.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Humanos , Listeria monocytogenes/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Óperon/genética , Solo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
PLoS Genet ; 19(9): e1010946, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37699047

RESUMO

Streptococcus pneumoniae (the pneumococcus) is well known for its ability to develop competence for natural DNA transformation. Competence development is regulated by an autocatalytic loop driven by variations in the basal level of transcription of the comCDE and comAB operons. These genes are part of the early gene regulon that controls expression of the late competence genes known to encode the apparatus of transformation. Several stressful conditions are known to promote competence development, although the induction pathways are remain poorly understood. Here we demonstrate that transient temperature elevation induces an immediate increase in the basal expression level of the comCDE operon and early genes that, in turn, stimulates its full induction, including that of the late competence regulon. This thermal regulation depends on the HtrA chaperone/protease and its proteolytic activity. We find that other competence induction stimulus, like norfloxacin, is not conveyed by the HtrA-dependent pathway. This finding strongly suggests that competence can be induced by at least two independent pathways and thus reinforces the view that competence is a general stress response system in the pneumococcus.


Assuntos
Óperon , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Temperatura , Proteólise , Óperon/genética , Endopeptidases
14.
Nucleic Acids Res ; 51(17): e92, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37602419

RESUMO

Stochastic simulation models have played an important role in efforts to understand the mechanistic basis of prokaryotic transcription and translation. Despite the fundamental linkage of these processes in bacterial cells, however, most simulation models have been limited to representations of either transcription or translation. In addition, the available simulation models typically either attempt to recapitulate data from single-molecule experiments without considering cellular-scale high-throughput sequencing data or, conversely, seek to reproduce cellular-scale data without paying close attention to many of the mechanistic details. To address these limitations, we here present spotter (Simulation of Prokaryotic Operon Transcription & Translation Elongation Reactions), a flexible, user-friendly simulation model that offers highly-detailed combined representations of prokaryotic transcription, translation, and DNA supercoiling. In incorporating nascent transcript and ribosomal profiling sequencing data, spotter provides a critical bridge between data collected in single-molecule experiments and data collected at the cellular scale. Importantly, in addition to rapidly generating output that can be aggregated for comparison with next-generation sequencing and proteomics data, spotter produces residue-level positional information that can be used to visualize individual simulation trajectories in detail. We anticipate that spotter will be a useful tool in exploring the interplay of processes that are crucially linked in prokaryotes.


Assuntos
Nucleotídeos , Biossíntese de Proteínas , Simulação por Computador , Células Procarióticas , Óperon/genética
15.
Int J Biol Macromol ; 253(Pt 1): 126407, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37634771

RESUMO

Bacillus catabolite control protein (CcpA) mediates carbon catabolite repression (CCR) by binding with catabolite response elements (CREs) of genes or operons. Although numerous CREs had been predicted and identified, the influence of the changes in sequence and structure of CREs on recognition and binding for CcpA has yet to be unclear. This study aimed at revealing how CcpA could bind such diverse sites and focused on the analysis of multiple mutants of the CRE motif derived from the α-amylase promoter. Molecular docking and free energy calculation insights into the binding ability between the CRE sequences composition and CcpA protein. Disruption of conserved nucleotides in the CRE motifs, as well as altering the symmetric structure of the CRE sequences and the relative position of the displaced CRE motifs near the transcription start site contribute to some extent to weakening the strength of CcpA - dependent regulation. These main factors contribute to the understanding of the subtle changes in CRE motifs leading to differential regulatory effects of CcpA. Finally, an engineered promoter with a high level of transcription was obtained, and elevated extracellular enzyme activity was achieved in the expression system of Bacillus amyloliquefaciens, including alkaline protease, keratinase, aminopeptidase and acid-stable alpha amylase. The study also provides a reference for the application of other promoters with CRE motifts.


Assuntos
Proteínas de Ligação a DNA , Proteínas Repressoras , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Bactérias/química , Regiões Promotoras Genéticas/genética , Óperon/genética , Regulação Bacteriana da Expressão Gênica , Bacillus subtilis/genética , Ligação Proteica
16.
Proc Natl Acad Sci U S A ; 120(33): e2305393120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556498

RESUMO

Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.


Assuntos
Antitoxinas , Toxinas Bacterianas , Antitoxinas/genética , Toxinas Bacterianas/metabolismo , Células Procarióticas/metabolismo , Óperon/genética , Biologia Computacional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
PLoS Biol ; 21(7): e3002189, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459330

RESUMO

Plant-associated bacteria play important regulatory roles in modulating plant hormone auxin levels, affecting the growth and yields of crops. A conserved auxin degradation (iad) operon was recently identified in the Variovorax genomes, which is responsible for root growth inhibition (RGI) reversion, promoting rhizosphere colonization and root growth. However, the molecular mechanism underlying auxin degradation by Variovorax remains unclear. Here, we systematically screened Variovorax iad operon products and identified 2 proteins, IadK2 and IadD, that directly associate with auxin indole-3-acetic acid (IAA). Further biochemical and structural studies revealed that IadK2 is a highly IAA-specific ATP-binding cassette (ABC) transporter solute-binding protein (SBP), likely involved in IAA uptake. IadD interacts with IadE to form a functional Rieske non-heme dioxygenase, which works in concert with a FMN-type reductase encoded by gene iadC to transform IAA into the biologically inactive 2-oxindole-3-acetic acid (oxIAA), representing a new bacterial pathway for IAA inactivation/degradation. Importantly, incorporation of a minimum set of iadC/D/E genes could enable IAA transformation by Escherichia coli, suggesting a promising strategy for repurposing the iad operon for IAA regulation. Together, our study identifies the key components and underlying mechanisms involved in IAA transformation by Variovorax and brings new insights into the bacterial turnover of plant hormones, which would provide the basis for potential applications in rhizosphere optimization and ecological agriculture.


Assuntos
Ácidos Indolacéticos , Rizosfera , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Bactérias/metabolismo , Óperon/genética
18.
Proc Natl Acad Sci U S A ; 120(30): e2301402120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459525

RESUMO

DNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases, competent for initiation, which freely slide on the DNA after having terminated one round of transcription. Promoter-dependent transcription reinitiation from this pool of posttermination RNAP may lead to coupled initiation at nearby operons, but it is unclear whether this can occur over the distance and timescales needed for it to function widely on a bacterial genome in vivo. Here, we mathematically model the hypothesized reinitiation mechanism as a diffusion-to-capture process and compute the distances over which significant interoperon coupling can occur and the time required. These quantities depend on molecular association and dissociation rate constants between DNA, RNAP, and the transcription initiation factor σ70; we measure these rate constants using single-molecule experiments in vitro. Our combined theory/experimental results demonstrate that efficient coupling can occur at physiologically relevant σ70 concentrations and on timescales appropriate for transcript synthesis. Coupling is efficient over terminator-promoter distances up to ∼1,000 bp, which includes the majority of terminator-promoter nearest neighbor pairs in the Escherichia coli genome. The results suggest a generalized mechanism that couples the transcription of nearby operons and breaks the paradigm that each binding of RNAP to DNA can produce at most one messenger RNA.


Assuntos
RNA Polimerases Dirigidas por DNA , DNA , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Óperon/genética , Transcrição Gênica , Fator sigma/genética , DNA Bacteriano/metabolismo
19.
Nucleic Acids Res ; 51(15): 7851-7867, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439380

RESUMO

Genes organized within operons in prokaryotes benefit from coordinated expression. However, within many operons, genes are expressed at different levels, and the mechanisms for this remain obscure. By integrating PacBio-seq, dRNA-seq, Term-seq and Illumina-seq data of a representative archaeon Methanococcus maripaludis, internal transcription termination sites (ioTTSs) were identified within 38% of operons. Higher transcript and protein abundances were found for genes upstream than downstream of ioTTSs. For representative operons, these differences were confirmed by northern blotting, qRT-PCR and western blotting, demonstrating that these ioTTS terminations were functional. Of special interest, mutation of ioTTSs in ribosomal protein (RP)-RNA polymerase (RNAP) operons not only elevated expression of the downstream RNAP genes but also decreased production of the assembled RNAP complex, slowed whole cell transcription and translation, and inhibited growth. Overexpression of the RNAP subunits with a shuttle vector generated the similar physiological effects. Therefore, ioTTS termination is a general and physiologically significant regulatory mechanism of the operon gene expression. Because the RP-RNAP operons are found to be widely distributed in archaeal species, this regulatory mechanism could be commonly employed in archaea.


Assuntos
Archaea , Proteínas Ribossômicas , Terminação da Transcrição Genética , Archaea/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Óperon/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transcrição Gênica
20.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-37439398

RESUMO

Bacterial second messenger signaling often plays an important role in cellular physiology. In this study, we have attempted to understand how c-di-AMP synthesis and degradation are transcriptionally regulated in Mycobacterium smegmatis. We found that although a c-di-AMP synthesis gene, disA, exists in a multi-gene operon, a sub-operon promoter arrangement facilitates disA gene expression under normal conditions to maintain intracellular c-di-AMP concentration and is induced further during certain stress adaptations. Individual gene-specific promoters also play a key role under various genotoxic stress conditions to shut down c-di-AMP synthesis, which could otherwise be detrimental for cells. Further, we learned that a high c-di-AMP concentration plays a role in the autoregulation of the disA promoter to limit intracellular c-di-AMP concentration. This study was helpful to understand how c-di-AMP synthesis is regulated under normal and stress conditions linked to its physiological relevance in M. smegmatis.


Assuntos
Proteínas de Bactérias , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Homeostase/genética , Óperon/genética , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...